Wireless Sensor Network for Prediction of Tides using Mamdani Fuzzy Inference System

Arabinda Nanda¹
Department of CSE,
Krupajal Engineering College,
Bhubaneswar, Orissa, INDIA.
aru.nanda@rediffmail.com

Omkar Pattanaik²
Department of CSE,
Synergy Engineering College,
Dhenkanal, Orissa, INDIA.
omkar29in@gmail.com

Biswajita Mohanty³
Department of CSE,
Krupajal Engineering College,
Bhubaneswar, Orissa, INDIA.
biswajita.moni@gmail.com

Abstract - Prediction of tides is very much essential for human activities and to reduce the construction cost in marine environment. Wireless sensor networks (WSN) are one of the research areas in 21st century, which provide platform to scientists with the capability of developing real time monitoring systems. This paper discusses the development of a WSN to predict tides, which includes the design, development and implementation of a WSN for real time monitoring, the development of the fuzzy system needed that will enable efficient data collection and data aggregation, and the network requirements of the deployed prediction tides detection system. The actual deployment of Paradeep port (Latitude: 20° 16’ 60 N, Longitude: 86° 42’ 0 E) north east coast of India, a region renowned for deals with bulk cargo apart from other clean cargoes.

Keywords - wireless sensor network; fuzzy inference system; prediction of tides.

I. INTRODUCTION

Accurate tidal prediction is an important problem for construction activities in coastal and offshore areas. In some coastal areas, the slopes are very gentle and tidal variation makes waterfront distances in the range from hundred meters to a few kilometers. Similarly tidal data is important for the construction of jetties, harbors and navigation. In offshore areas, accurate tidal data is helpful for successful and safe operations. The applications of Wireless Sensor Networks (WSN) contain a wide variety of scenarios. In most of them, the network is composed of a significant number of nodes deployed in an extensive area in which not all nodes are directly connected. Then, the data exchange is supported by multihop communications. Routing protocols are in charge of discovering and maintaining the routes in the network. However, the correctness of a particular routing protocol mainly depends on the capabilities of the nodes and on the application requirements [1].

Theoretical expression of tides was first derived by Newton in 1687 and then by Bernoulli in (Thomas, 1885). The harmonic analysis of tidal prediction made by Thomas was subsequently extended by Darwin (1898). The least square prediction technique was incorporated by Doodson (1958) for determining the harmonic constants. Thereafter many methods of tide prediction techniques were developed. In a recent paper by Yen et al (1996) Kalman filtering technique was used for the short-term prediction of tides at Kaohsiung Harbour, Taiwan. This has helped in overcoming the problem of conventional harmonic analysis which requires a long period of measured tides. Yen et al have used harmonic tide prediction model with 4 main tidal components namely, S, M, K1 and O1. However, the accurate prediction of tides has remained a concern for coastal and offshore engineers.

Environmental disasters are largely unpredictable and occur within very short spans of time. Therefore technology has to be developed to capture relevant signals with minimum monitoring delay. Wireless sensors are one of the latest technologies that can quickly respond to rapid changes of data and send the sensed data to a data analysis center in areas where cabling is not possible. WSN technology has the capability of quick capturing, processing, and transmission of critical data in real-time with high resolution. However, it has its own limitations such as relatively low amounts of battery power and low memory availability compared to many existing technologies. It does, though, have the advantage of deploying sensors.
in hostile environments with a bare minimum of maintenance. This fulfills a very important need for any real time monitoring, especially in unsafe or remote scenarios.

This paper discusses the design and deployment of tide prediction detection system using a WSN system at Paradeep port, Orissa (State), India. The increase in depressions during the monsoons over Bay of Bengal is directly related to rise in the temperature of sea surface. It is an impact of global warming. Abnormal behavior of sea surface temperature has started to affect the atmospheric climate over the Bay of Bengal. The increased number of continuous depressions over the Bay of Bengal has also led to increase in the height and velocity of the sea waves, which causes increase tides on the sea coast.

The remainder of the paper is organized as follows. Section 2 describes Research Background and Related Work. In Section 3, we describe the Mamdani Fuzzy Model. Section 4 Wireless Sensor Test Bed. Section 5 Conclusion and Future Work.

II. RESEARCH BACKGROUND AND RELATED WORK

The research background and relevant technologies includes: (1) the definition of tides (2) wireless sensor network technology.

A. Definition of Tides

What is Tide?

The periodic vertical movement of water on the Earth’s Surface. Tides are the alternating rise and fall of sea level with respect to land, as influenced by the gravitational attraction of the moon and sun.

What causes tides?

Tide-generating forces (TGF) are a result of the gravitational attraction between the earth, the sun, and the moon and the centrifugal force due to the relative motions of the moon around the earth, and the earth around the sun. While these forces exactly balance on average, the local mismatch at the earth’s surface creates a horizontal force directed towards the surface points closest and farthest from the moon (the "lunar" TGF) and the sun (the "solar" TGF).

Other factors influence tides

Coastline configuration, local water depth, seafloor topography, winds, and weather affect the arrival times of tides, their range, and the interval between high and low water. A tide prediction can differ from the actual sea level that will be observed as a result of the tide.

Why do we need tidal predictions?

Knowledge of the times and heights of tides and the speed and direction of tidal streams is important to a variety of people. These include:

a. The Hydrographic Surveyor in order to reduce soundings to a common datum. This is very important, as the Navy would not be able to defend our waters without accurate charts.

b. The Navigator particularly in estuarine and coastal waters and the approaches to harbours.

c. Harbor and Coastal Engineers in the construction of harbor works, bridges, locks and dykes.

d. The Public to know when to go fishing, sailing, cross rivers on hiking trails

Prediction of Times and Heights of Tides

In tidal theory astronomical forces of harmonic nature produce tides. A definite relationship exists between the tide generating forces and the observed tides. But, because of factors influencing local heights and times, it is not feasible to predict tides purely from knowledge of the positions and movements of the moon and sun obtained from astronomical tables. A partially empirical approach based upon actual observations of tides in many areas over an extended period of time is necessary. To achieve maximum accuracy in prediction, a series of tide observations at any one location over a full 19-year tidal cycle is required. Less accurate predictions can be made using time and height constants applied to these 19-year stations. These constants are obtained by analysis of tidal observations at tide stations operated for less than 19 years, but usually more than 29 days.
B. Wireless Sensor Network Technology

WSN technology has generated enthusiasm in computer scientists to learn and understand other domain areas which have helped them to propose or develop real time deployments. One of the major areas of focus is environmental monitoring, detection and prediction. The Drought Forecast and Alert System (DFAS) has been proposed and developed in [3]; it uses mobile communication to alert the users, whereas the deployed system uses real time data collection and transmission using the wireless sensor nodes, Wi-Fi, satellite network and also through internet. The real streaming of data through broadband connectivity provides connectivity to wider audience. An experimental soil monitoring network using a WSN is presented in reference [2], which explores real-time measurements at temporal and spatial granularities.

In this paper, real time deployment of a heterogeneous network for tide prediction detection has been discussed. This study incorporates both theoretical and practical knowledge from diverse domains such as tide prediction and geomechanics, wireless sensor, Wi-Fi, and satellite networks, power saving solutions, and electronic interface and design, among others, which covered the design, development and deployment of a real-time coastal tidal system using a WSN.

III. MAMDANI FUZZY MODEL

The most commonly used fuzzy inference technique is the so-called Mamdani method. In 1975, Professor Ebrahim Mamdani of London University built one of the first fuzzy systems to control a steam engine and boiler combination. He applied a set of fuzzy rules supplied by experienced human operators. The mamdani-style fuzzy inference process is performed in four steps:

- Fuzzification of the input variables
- Rule evaluation (inference)
- Aggregation of the rule outputs
- Defuzzification.

Step 1: Fuzzification

The first step is to take the crisp inputs, x1, y1 and z1 (depression over sea, temperature over sea and height & velocity of wave), and determine the degree to which these inputs belong to each of the appropriate fuzzy sets. We examine a simple three-input one-output problem that includes two rules:

Rule: 1 IF x is A2 AND y is B2 THEN r is O2

Rule: 2 IF x is A2 AND z is C2 THEN r is O2

The Reality for these kinds of rules:

Rule: 1 IF depression over sea is more AND temperature over sea is more THEN tides over sea is more.

Rule: 2 IF depression over sea is more AND height, velocity of wave is more THEN tides over sea is more.
Step 2: Rule Evaluation

The second step is to take the fuzzified inputs. \(\mu_{x=A_1} = 0.1, \ \mu_{x=A_2} = 0.7, \ \mu_{y=B_1} = 0.1, \ \mu_{y=B_2} = 0.7 \) and \(\mu_{z=C_1} = 0.1, \ \mu_{z=C_2} = 0.7 \). Apply them to the antecedents of the fuzzy rules. If a given fuzzy rule has multiple antecedents, the fuzzy operator (AND or OR) is used to obtain a single number that represents the result of the antecedent evaluation.

RECALL: To evaluate the disjunction of the rule antecedents, we use the OR fuzzy operation. Typically, fuzzy expert systems make use of the classical fuzzy operation union:

\[
\mu_{A\lor B}(x) = \max [\mu_A(x), \ \mu_B(x)]
\]

Similarly, in order to evaluate the conjunction of the rule antecedents, we apply the AND fuzzy operation intersection:

\[
\mu_{A\land B}(x) = \min [\mu_A(x), \ \mu_B(x)]
\]

Rule: 1 IF \(x \) is \(A_2 \) (0.7) \ AND \(y \) is \(B_2 \) (0.7) \ THEN \(r \) is \(O_2 \) (0.7)

Rule: 2 IF \(x \) is \(A_2 \) (0.7) \ AND \(z \) is \(C_2 \) (0.7) \ THEN \(r \) is \(O_2 \) (0.7)

Step 3: Aggregation of the Rule Outputs

Aggregation is the process of unification of the outputs of all rules. We take the membership functions of all rule consequents previously clipped or scaled and combine them into a single fuzzy set. The input of the aggregation process is the list of clipped or scaled consequent membership functions, and the output is one fuzzy set for each output variable.

\[
r \text{ is } O_2 \ (0.7) \rightarrow r \text{ is } O_2 \ (0.7) = \sum
\]

Step 4: Defuzzification

The last step in the fuzzy inference process is defuzzification. Fuzziness helps us to evaluate the rules, but the final output of a fuzzy system has to be a crisp number.

The input for the defuzzification process is the aggregate output fuzzy set and the output is a single number. There are several defuzzification methods, but probably the most popular one is the centroid technique. It finds the point where a vertical line would slice the aggregate set into two equal masses. Mathematically this centre of gravity (COG) can be expressed as:

\[
COG = \frac{\sum_{x=a}^{b} x \cdot m(x)}{\sum_{x=a}^{b} m(x)}
\]

Centroid defuzzification method finds a point representing the centre of gravity of the aggregated fuzzy set \(A \), on the interval \([a, b]\). A reasonable estimate can be obtained by calculating it over a sample of points. The final output of defuzzification will be the erosion degree.

IV. WIRELESS SENSOR TEST BED

The WSN follows a two-layer hierarchy, with lower layer wireless sensor nodes, sample and collect the heterogeneous data from the sensor column and the data packets are transmitted to the upper layer. The upper layer aggregates the data and forwards it to the sink node (gateway) kept at the deployment site. Data received at the gateway has to be transmitted to the Field Management Center (FMC) which is approximately 500mt away from the gateway. A Wi-Fi network is used between the gateway and
FMC to establish the connection. The FMC incorporates facilities such as a VSAT satellite earth station and a broadband network for long distant data transmission. The VSAT satellite earth station is used for data transmission from the field deployment site at para deep port sea beach, Orissa, INDIA to the Data Management Center (DMC), situated within the state.

The DMC consists of the database server and an analysis station, which performs data analysis and coastal tide prediction modeling and simulation on the field data to determine the prediction probability. The wireless sensor network architecture for tide prediction detection is as shown in Fig given below.

The para deep coastal region experiences frequent high tides and has prone areas within 1 5 0 K. M (konark, puri) which can be utilized as future extension sites for tide detection systems. The different deployment sites can connect to the FMC via a Wi-Fi network.

V. CONCLUSION AND FUTURE WORK

Real time monitoring of tide prediction is one of the research areas available today in the field of geophysical research. This paper discusses the development of an actual field deployment of a WSN based tide prediction detection system. This system uses a heterogeneous network composed of WSN, Wi-Fi, and satellite terminals for efficient delivery of real time data to the DMC, to enable sophisticated analysis of the data and to provide tide warnings and risk assessments to the inhabitants of the region. In the future, this work will be extended to a full deployment by using the lessons learned from the existing network. This network will be used for understanding the capability and usability of WSN for critical and emergency application. In the future, we plan to experiment with this method, including a simulation and implementation, to evaluate its performance and usability in a real sensor network application.

REFERENCES

AUTHORS PROFILE

Prof. Arabinda Nanda: Received M. Tech (CS) from Utkal University in the year 2007. Currently working as Professor & HOD in the Department of Computer Science & Engineering at Krupajal Engineering College, Bhubaneswar, Orissa, India. Contributed more than 13 research level papers to many National and International journals and conferences. Having research interests include Sensor Network, Adhoc Network, Soft Computing, Artificial Intelligence and Data Mining.

Prof. Omkar Pattanaik: Received M. Tech (CS) from Bijupatnaik University in the year 2009. Currently working as Senior Lecture in the Department of Computer Science & Engineering at Synergy Institute of Engineering & Technology, Dhenkanal, Orissa, India. Contributed more than 04 research level papers to many National and International journals and conferences. Having research interests include Sensor Network, Adhoc Network, Soft Computing, and Data Mining.

Biswa Jita Mohanty: Continuing M. Tech (CSE) at Bijupatnaik University, Orissa. Currently Working as Senior Lecture in the Department of Computer Science & Engineering at Krupajal Engineering College, Bhubaneswar, Orissa, India. Contributed more than 02 research level papers. Having research interests include Sensor Network, Soft Computing, and Software Engineering.